\qquad

Course Code: CS309
 Course Name: GRAPH THEORY AND COMBINATORICS

Max. Marks: 100
Duration: 3 Hours
PART A
Answer all questions, each carries 3 marks.
1 Assume a graph G has n number of vertices ($n>4$) and it's complement graph
G^{\prime} is the same. Find the minimum possible value of n. Justify your answer.
2 State with valid reasons whether the given graph is Euler or not.

3 Prove the statement, "If a graph (connected or disconnected) has exactly two vertices of odd degree, then there must be a path joining these two vertices".
4 Construct separate digraphs for representing symmetric, transitive and equivalence relations.

PART B

Answer any two full questions, each carries 9 marks.
5 a) Define complete graph. Does a complete graph contain Hamiltonian circuit?
Consider a complete graph with 7 vertices, how many edge disjoint Hamiltonian circuits it has?
b) Of the given graphs, determine which of them are isomorphic graphs?

6 a) Prove the theorem, 'A simple graph with n vertices and k components can have at-most $(\mathrm{n}-\mathrm{k})(\mathrm{n}-\mathrm{k}+1) / 2$ edges.
b) An ordered n-tuple $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{1}>=d_{2}>=\ldots>=d_{n}$ is called graphic if there exists a simple undirected graph with n vertices having degrees d_{1}, d_{2}, \ldots, d_{n} respectively. Which of the following is/are graphic?
I. (5,5,5,5,5,5,5,5), II.(4,4,4,3,2,2,1), III.(4,4,3,3,3,2,2,2), IV.(3,2,2,1,1,1)

7 a) State travelling salesman problem.
Consider a weighted graph as below. Find and draw the minimum cost travelling salesman's tour for it. Also mention the cost.

b) Define the terms: (i) Simple Graph (ii) Finite Graph (iii) Infinite Graph (iv) Null Graph.

PART C
Answer all questions, each carries 3 marks.
8 Define the terms: (i) Vertex Connectivity (ii) Cut Vertex (iii) Separable Graph
9 If G is a planar graph, then any plane drawing of G divides the plane into regions, called faces. One of these faces is unbounded, and is called the infinite face. If f is any face, then the degree of f is the number of edges encountered in a walk around the boundary of the face f. If all faces have the same degree say g , then G is face-regular of degree g . Consider a graph with face regular degree of 5 and 8 vertices, then find the number of edges in the graph.
10 Prove that "Every cut set in a connected graph G must contain at least one branch of every spanning tree of G "

11 State the different metric properties of distance.

PART D

Answer any two full questions, each carries 9 marks.
12 a) Define spanning tree. Find and draw two different spanning trees from the graph given below:

b) For the given graph below, find any one spanning tree contained in it and determine the fundamental cut-sets associated with that spanning tree. Then verify the theorem "With respect to a given spanning tree T, a branch b that
determines a fundamental cut-set S is contained in every fundamental circuit associated with the chords in S".

13 a) With proper arguments and facts prove the statement, "The edge connectivity of a graph cannot exceed the degree of the vertex with the smallest degree in G. "
b) Find the centre, radius and diameter of the tree given below:

14 a) Find the geometric dual for the given graph.

b) How many labelled trees are possible with 4 vertices? Draw eight different labelled trees with 4 vertices A, B, C and D.

PART E

Answer any four full questions, each carries 10 marks.
15 a) With an example compare the Edge listing and Two Linear Arrays form of computer representation for graphs.
b) With a neat flow chart explain the algorithm for determining the connectedness and components for a graph.

16 a) State the different properties of an incidence matrix representation of a graph.
b) Given below are the adjacency matrix representations of two graphs. Draw the graph corresponding to each matrix. (Note: Assume suitable vertex name if not given).
v_{1}
v_{2}
v_{4}
v_{5}
(i)
$v_{6}$$\left[\begin{array}{llllll}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0\end{array}\right]$
(ii)

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

17 Apply Dijkstra's algorithm to find shortest path in the given graph starting with vertex ' 0 ' as source.

18 a) Find at-least 6 circuits for the given graph and generate the corresponding circuit matrix representation with the circuits obtained. (Note: Assume suitable names for the vertices and edges.)

b) State the different properties of a path matrix representation of a graph.

19 a Prove that the rank of an incidence matrix of a connected graph with n vertices is $\mathrm{n}-1$.
b Describe the steps invloved in the Prim's algorithm for computing the minimum spanning tree of a given graph.
20 a) Prove the statement, "If B_{f} is a fundamental circuit matrix of a connected graph G with e edges and n vertices, rank of $B_{f}=\mathrm{e}-\mathrm{n}+1$."
b) With an example state how a cut-set matrix of a graph is generated. Also state the different properties of the cut-set matrix representation.

